
Pong on the XGS PIC

Videogames now transcend generations, each becoming seemingly more 
entrenched in this subculture.  Presenting unique challenges to programmers across every 
platform, from the Atari 2600 equipped with only 128 bytes to the impossibility of 
scrolling with VGA, programmers required ingenuity to combat the hardware-imposed 
constraints of each more powerful system.

To understand the art of writing videogames, the aspiring programmer must 
simply write them.  One game stands alone in its simplicity and its recognizability across 
every generation of gamer: Pong.

The first part of the document will remain universal for every programming 
platform, simply motivating the various pieces of the game bit by bit.  Logically, the next 
section will be primarily for the XGS PIC created by Nurve Networks.  As of this 
writing, a version of Pong has been posted on the XGameStation forums but was written 
in XGS Basic.  This document will focus on utilizing the C-based drivers, but the actual 
execution should remain similar across multiple platforms.

Game Constructs

Graphics Engine

A basic version of Pong will have few graphical objects on the screen.  The 
graphics engine draws, at minimum, three objects, in two colors: two paddles and a single 
ball.  Drawing the objects is a matter of plotting pixels on the screen.  Geometrically, the 
graphics engine can draw three rectangles on the screen to satisfy these minimum 
requirements.  Modifying the program to draw the ball as a circle rather than a square is 
left as an exercise.  The choice of colors for the background and the graphical objects is 
unimportant as long as the background and the objects are different, contrasting colors. 
Assuming the drivers can only plot pixels, the easiest way to make a rectangle is to utilize 
loops while iterating over the area of the desired rectangle.  Plotting every pixel in a row 
until the number of desired columns is reached then moving onto the next row is likely 
the most intuitive way to draw a filled-in rectangle.  When deciding lengths and widths 
for the ball and the paddles, good programming practice would suggest using constants. 
While fine-tuning the look, changing the values only once is much preferable to having to 
hunt everywhere in the program where those values are used.  The obvious brute-force 
approach to refreshing the screen works on modern computers quite nicely without any 
flicker.  When beginning, this approach will be used for simplicity and then discuss ways 
to improve the methodology to achieve faster results.  When refreshing the screen, the 
general algorithm will be to set every pixel to the background color and then draw the 
objects in their respective locations with a different color on top of the recently reset 
background.  In the optimization section, it will be shown that this algorithm is not the 
best way to do things, but tolerating the inefficiencies for now will result in an easier 
understanding of how the game as a whole is working.

Placement of the objects on the screen will require some custom terminology and 
pictures to describe effectively.  This implementation of Pong will be faithful to some of 
the earliest incarnations with regard to the placement of the paddles.  The paddles will 



move vertically at a fixed point on the screen, rather than moving laterally at a fixed 
vertical point.  The actual decision is fairly arbitrary, both versions will work in very 
similar fashions, but this will affect some game logic later.  The screen of play will refer 
to the bounded portion of the screen where all of the action takes place.  The pit is the 
location between the left or right edge of the screen of play and the fixed x-coordinate 
where the paddle will move up or down.  The paddle height and paddle width are self-
explanatory, but, with this implementation, the paddle height should be larger than the 
paddle width.

To describe the location of the game objects within the screen of play, the 
program does not need to know where every pixel is in the area of the object.  Picking an 
arbitrary point will allow calculations to be used to get every other pixel in the object. 
There are a few obvious choices for the point, but using the top left corner will be the 
convention used for this program.

Game Logic

With the graphical engine finished at the basic level, the last piece of the program 
left to motivate is the game logic. There are exactly four pieces that will each be 
discussed in turn: Player input, ball movement, collision detection, and artificial 
intelligence (AI).

Player Input

Player interaction is perhaps the most important aspect of every game.  This 
salient piece allows the player to influence the course of events, transforming a graphics 
demo into a fully fledged game. How the input is actually driven, whether by gamepad, 
keyboard, or some other construct, is not particularly important.  The more interesting 
question is what the input actually does to influence game world.

This seemingly long exposition leads to a very anti-climactic and obvious 
conclusion: one action will move the paddle up and a different action will move the 
paddle down.

Ball Movement

The game must autonomously control the ball in the screen of play.  The ball does 
not need any sort of AI to control its movement, however, as the ball should move in a 
predictable manner.  Movement will be controlled by predefined states, as a ball can 
move up or down and left or right. Combinatorially, the ball now has four possible states:

1. Up and Left
2. Up and Right
3. Down and Left
4. Down and Right

With these states defined as such, the ball will always move in a diagonal manner around 
the screen of play.



Collision Detection

The ball now has a way to move in a predictable manner, but how does the ball 
transition between the various states?  Quite logically, certain game events will dictate 
the transitions, but the next step is to define when the changes happen and to exactly 
which state.  With this design of Pong, what should happen when the ball hits the top, 
and, analogously, bottom of the screen of play?  Breaking this down further, to hit the top 
of the screen, the ball must be moving upward.  To simulate a bouncing effect, the ball 
needs to shift to the downward direction.  When the various ball states were described 
above, the ball has two downward states: either left or right.

Analysis must now continue in a case by case basis.  Therefore, assume the ball is 
moving upward and left just before the collision.  Moving downward is the next logical 
move, but should it continue moving left or switch to moving right?  If the ball were to 
transition to a right-moving state, the ball would reverse its direction along the diagonal 
that it came from, never moving to the other side of the screen.  The only way for it to 
reach the other side of the screen of play is to continue moving in a leftward direction.  A 
similar situation holds when the ball is moving upward and right: continue moving to the 
right and switch to a downward direction.  The downward cases are handled 
symmetrically.

Exactly when do these transition changes happen?  This will involve the 
definition of a collision: two objects at some state of intersection are said to collide.  In 
this game’s case, having the objects actually intersect with one another will lead to 
graphical anomalies; therefore, the exact state of intersection will be when the objects are 
tangent to one another, or simply touching but not overlapping.

A discussion of the coordinate plane is now in order.  In many languages, plotting 
pixels works in a similar fashion.  Each unit in an ordered pair is a pixel. with the x-
coordinate measuring the amount of pixels from the left bound of the screen and the y-
coordinate measuring the distance from the top bound of the screen.  Let the current 
resolution be X × Y, where X, Y ≥ 0.  X describes the maximum width of the screen while 
Y denotes the height of the screen.  The top-left corner of the screen is (0, 0), while the 
bottom-right corner is (X, Y).  To plot a point 40 pixels left and 20 pixels down, use the 
ordered pair (40, 20).  Therefore, the top portion of the screen can be described as (x, 0), 
while the bottom portion of the screen can be denoted (x, Y), where 0 ≤ x ≤ X (see Figure 
1).

It turns out that (x, 0) and (x, Y) are the collision points within the screen of play. 
For the former, the topmost portion of the ball will be tangent to the top edge of the 
screen of play, and the ball needs to change to the correct state before actually 
intersecting with the top edge.  Since all of our game objects are described with top left 
corners, each game object will be represented in data with some sort of coordinate pair. 
Then the bottom edge case works similarly but with one slight problem.  If the ball’s 
location is ever equal to (x, Y), then it must already be intersecting the bottom edge of the 
screen of play.  Since the ball is a square with a constant length s, the exact tangent point 
can now easily be calculated.  By subtracting s from Y, the height of the screen yields the 
point where the ball’s bottom edge is tangent to the bottom edge of the screen of play. 



Representing this in coordinate pair form, every possible collision point can be 
represented by (x, Y − s).

A similar set of collisions arises from the case when the ball and paddle don’t 
collide; in essence, the scoring condition.  Using the definition of the coordinate plane, 
(0, y) and (X, y) must be the left and right bounds of the screen of play, where 0 ≤ y ≤ Y. 
Since top-left corners of objects are used to define their location, the definition of the left 
edge, (0, y), can be used to find the tangent points.  Just like when finding collision points 
for the top and bottom edges, one case utilized the definition of an edge but an offset 
needed to be used to find the exact tangent point.  If the ball’s location were to equal (X, 
y), the ball would have already intersected with the right edge.  Since the ball has a width 
of s, (X − s, y) yields all of the tangent points with the right edge of the screen of play.

The Coordinate Plane
Figure 1

All of the screen edge collisions have now been explicitly handled.  The last two 
cases are slightly more difficult, as this is when the ball collides with the paddles on the 
left and right sides of the screen.  The calculation is similar to when working with the 
wall-like top and bottom edges of the screen of play, but the wall is now bounded, or has 
a very specific length.  Where can the ball actually collide with a paddle?  

Let h denote the height of the paddle and w describe the width in pixels.  Suppose 
that (px, py) is the location of the paddle and (bx, by) describe the location of the ball. 
(Remember, these are the top left corners.)  To find the collision point, the right edge of 
the paddle needs to be used.  Since the width of the paddle is a constant, (px + w, py) will 
yield the top-right corner of the paddle.  This is now the upper bound of the possible 
collision points with the paddle.  Finding the lower right corner will yield the lower 
bound, and thus create all of the possible points where the ball can collide with the 
paddle.  Since the height of the paddle is a constant, the lower-right corner can be found 
by combining the right edge calculation and h, yielding (px + w, py + h).  To actually 
check for the collision, compare the location (bx, by) with (px + w, py + h).  So when bx = 
px + w and py ≤ by ≤ py + h, a collision occurs (see Figure 2).



Anatomy of a Pong Paddle and Collision
Figure 2

The right paddle has a symmetric issue with the calculations.  Since the top-left 
corner is being used to represent locations, the left edge is practically given, so all points 
between (px, py) and (px, py +h) are the possible tangent points.  But now the right edge of 
the ball is needed to find the collision.  Since s is the length of a side of the ball, bx + s 
yields the top right corner of the ball.  The reasoning above can now work, so the 
collision occurs exactly when bx + s = px and py ≤ by ≤ py + h.

One last thing left to discuss: What should happen when the ball collides with the 
paddles?  If the ball collides with the paddle, then the horizontal state needs to switch, 
otherwise the ball would go through the paddle.  The next obvious question involves the 
vertical state of the ball.  Suppose the ball is going up; then if the ball were to flip its 
vertical state, or go down, then the ball would return along its same diagonal path since 
the ball flips its horizontal state.  Therefore, the vertical state should be the same.

An interesting trend can now be noticed between the relationships with collisions 
and the ball states.  If the ball collides with the top or bottom edge, flip the vertical state. 
If the ball collides with one of the paddles, a left or right edge as it were, flip the 
horizontal state.

Artificial Intelligence (AI)

At this point, all of the logic so far can be made into a complete two-player game. 
However, it would be nice to allow for a single-player mode (and be an interesting 
programming exercise). The AI does not need to be foolproof but act intelligently enough 
to give the player a challenge to remain entertaining.  The current problem rests in the 
definition of acting intelligently.

Referring to the notation above, let (bx, by) be the ball’s current location and     (px, 
py) denote the location of the computer player’s paddle. The collision detection code will 
handle the computation of collisions, but the AI needs to move the paddle in such a way 
that the paddle will generate a collision with the ball. Therefore, worrying about bx and px 

would be extraneous. Because of the simplicity of Pong, there are few cases to analyze.
Suppose that py > by. What does this mean in actuality with regard to the screen of 

play?  The top-left corner of the paddle is lower than the top-left corner of the ball on the 
screen.  The next problem is defining the optimal strategy for the computer player. 
Typically, the best strategy for the computer player is analogous to a human player’s 



strategy.  The best way to close the vertical distance between the ball and paddle is to 
move the paddle up, or decrement py.

Logically, there is one case left to handle: when py ≤ by. In the screen of play, this 
case will happen if and only if the paddle’s location is higher than the ball’s location. 
These two cases for the AI mirror each other in not only the geometric qualities, but also 
their solution. As a player, the optimal strategy in this situation is to move the paddle 
downward, or increment py.

The algorithm can now more intuitively be described. With regard to the y-
coordinates of the location, if the ball is above the paddle, then the paddle will move 
upward. The converse holds as well. But is this the optimal strategy? Something hidden 
lies based on arbitrary definitions created earlier to allow for easy graphical algorithms. 
All locations were defined to be the top-left corner of the object. Therefore, the current 
algorithm makes the attempt to line up the top left-corners of the paddle and the ball. Not 
necessarily a bad strategy, but it might not give the player an appearance of intelligence.

The logic is sound, but the comparison points are not the best choice.  Any human 
player implicitly tries to maximize the amount of colliding points between the ball and 
paddle. The best location on the paddle for the ball to collide with is actually fairly 
intuitive: the center. Leaving the maximum amount of paddle space on both sides of a 
colliding ball allows for a very good error tolerance when playing. To adjust the 
algorithm, simply compare the midpoints of the ball and paddle to give the AI the 
appearance of a more intelligent player. By letting h be the height of the paddle, then 
(px, py + h/2) yields the center of the paddle.  This calculation works similarly for the ball.

Program Structure

All of the game constructs − the graphics engine, player input, collision detection, and AI 
− are now defined.  The next step is to tie everything together into one program.

Initialization

The step of initialization is fairly nebulous at this level of abstraction, but it is still 
important to discuss since all the major steps are here.  The obvious first step is to set up 
the graphical interface that will run the engine.  If there are any other drivers or interfaces 
that need to be initialized, such as player input or sound, this is also the place to set those 
up.

The next major step is to create and assign starting values to all of the variables 
that will be used throughout the program (not temporary loop counters and their ilk).  The 
variables actually needed are the location of all the objects, defined by their top-left 
corner.  So, for every object, two variables are needed to account for x- and y-
coordinates. Something hidden by the design is the fact that the ball not only has location, 
but also states as well. Since the vertical and horizontal states are independent of each 
other, two variables must be used to account for the ball’s state of movement.

The final step is to initialize the very first frame of the screen of play.  The first 
step is to create the background of the screen.  Using the starting values for all of the 
location variables, plot all of the pixels needed to represent the objects.



Game Loop

The most important part of every game, the game loop’s timing, needs to be 
immaculate on many of the older systems and architectures.  The Atari 2600, for 
example, had 76 cycles of the processor to do all of the game logic, which includes sound 
as well.  The processors of today are much faster, and timing is only a real consideration 
for graphics pushing the hardware envelope.

For the purposes of this discussion, every iteration of the game loop will 
correspond to the drawing of a single frame and is timed to run at approximately 30 
frames per second.  The game loop needs to handle everything, every iteration, but stay 
within the limits of the television or monitor’s VSYNC.  The VSYNC is the longest 
period of time that the monitor or television is idle and not in the process of redrawing 
the screen.  Trying to write to video memory while the monitor or television is trying to 
read will lead to hardware contingencies, screen tearing, or other graphical anomalies.

What is the first thing the game loop needs to handle?  Suppose, for a moment, 
that all of the game constructs are divided into the game logic and the graphics engine. 
By putting the graphics code first, and then handling, say, player input, a problem arises. 
The problem arises from the initialization stage.  Essentially, the graphics engine will 
have computed the first frame before the loop actually starts and then draw the first frame 
again during the very first iteration of the game loop.  Now, the game logic is computed, 
but the current frame in the loop is desynced with the calculations done with the game 
logic.

Therefore, the game logic should be ordered first, but that leaves a few constructs 
to order.  Suppose that the arbitrary decision is made that the collision detection should 
be handled first.  Then, logically, the player input is handled sometime after that in the 
loop. Essentially, the collision is calculated, and then the player gets to move.  A 
contradiction can be found in at least one case, but suppose that py + h = by + 1, and the 
player is frantically trying to move downward to compensate. By the definition of the 
collision detector, no collision happens in this case. The player’s movement was in vain, 
even though there would be the appearance from the graphics engine that the ball should 
have bounced. Taking the contradiction further, the ball would then even look like it 
intersected with the paddle if the player continued to move downward. This would be a 
frustrating situation for the player. Therefore, the input should be handled sometime 
before collision detection.

The AI falls into a similar situation as above. If collision detection is handled 
before the AI moves, that leads to the same problem.  Therefore, the collision detection 
must happen after both the AI and player input.  The order with regards to the AI and 
player input does not matter; the movement of one is independent of the other.

But, when should the ball move?  Keep in mind that the graphics are being 
updated last; therefore, the ball location currently displayed by the television or monitor 
is the last iteration.  If the program were to use this position to check for collisions, then 
the same problem arises.  Therefore, the ball’s location needs to be updated first.

The final ordering is:

1. Ball Movement



2. Player Input
3. AI
4. Collision Detection
5. Updating the Screen of Play

Implementation Details

It is now time to put the theory into practice.  The implementation details diverge 
from the theory with regard to efficiency.  In some cases, the programmer can get away 
with only doing a few comparisons but implicitly checking everything required. 
Likewise, there are some things that the theory did not account for in the initial analysis.

Paddle Movement

The theoretical analysis of both the player input and AI left out a key, but 
intuitive, notion:  The paddles should not move off-screen. The collision detection 
ensured the ball would not move outside the screen of play, but the next step is to ensure 
that the player and AI cannot move outside this same boundary.  By asserting that the 
paddles stay within the bounds of the screen, player frustration is kept to a minimum and 
there is no attempt to draw objects outside the visible screen.  Graphics drivers may not 
explicitly check that the location is a valid value, so the graphics functions may try to 
write to memory outside the video buffer.

The solution is the same for both the player and AI:  Before attempting to move 
the paddle, simply assert that the paddle is not at a certain edge of the screen.  Since the 
paddles can only move vertically, there are only two cases.  Suppose that the paddle is 
attempting to move upward.  Before modifying the logical location, check the 
y−coordinate.  If this is 0, then the paddle is currently tangent to the top of the screen and 
should not move upward any more.

That leaves the case where the paddle is moving downward.  Since the paddle 
height is a constant, h, then the lowest point for the top-left corner must be (x, Y − h), 
where x is the fixed horizontal point for the paddle and Y is the screen height. To go any 
lower would mean the paddle is not just tangent, but intersecting, with the bottom edge of 
the screen.

Collision Detection

The collision detection is by far the most complex component discussed.  When 
working in 2-dimensional space, the implementation is actually a little simpler.  Rather 
than have a loop check every possible tangent point on both objects or edges, checking at 
most two points will suffice in every case.  

Focusing on the top and bottom edges, (x, 0) and (x, Y − s) are the only possible 
tangent points, where 0 ≤ x ≤ X.  Remember that every object is represented logically by 
an ordered pair that is its top-left corner. If the ball’s location is (bx, by) and if by = 0, then 
the ball is tangent to the top edge of the screen.  This required only one comparison to 
figure out when to change to the downward state.  Also, if by = Y − s, then the ball needs 
to also change its state to moving upward.



The left and right edges are equally simple. Recall that (0, y) and (X − s, y) are the 
possible tangent points, where 0 ≤ y ≤ Y. The next step is to compare bx to 0 and X − s. If 
bx is equal to either of these values, then the scoring condition has occurred. Likely, the 
ball will be reset so as to continue play.

The final set of cases, when the ball collides with the paddle, is only slightly more 
difficult. Let (px, py) be the current location of the paddle. Focusing on the left paddle, the 
first thing to check is the correct x−coordinates.  For the left paddle, all of the possible 
vertical tangent points lie on (px + w, y), where 0 ≤ y ≤ Y.  Logically, if px + w = bx, then a 
collision might be occurring.  There are a few other points to check.

The next step is to compare the y−coordinates.  Graphically, a collision should 
occur exactly when any pixel of the ball is between the top and bottom edges of the 
paddle.  From the previous section on collision detection, all of the possible tangent 
points can be described as all points between (px + w, py) and (px + w, py + h) if h is the 
height of the paddle.  At this point, it is possible to simplify the algorithm by comparing 
only two points.  If the top-left corner or the bottom-left corner is tangent to the paddle, 
then there must exist at least one point of the ball that visually looks like it is colliding 
with the paddle.  By checking these two points, the algorithm checks all points on the left 
side of the ball implicitly.  The right paddle works in a similar fashion, except the points 
to check are the top- and bottom-right corners of the ball, found by (bx + s, by) and (bx + s, 
by + s).

When implementing collision detection, the order of comparisons matters. 
Calculations, and, therefore. time, can be saved by checking the salient points in a certain 
order.  Take, for instance, the left paddle.  Suppose that the y−coordinates were checked 
first in the algorithm.  By nature, this is a complicated expression in many programming 
languages.  After this expression is checked, the next step would be to compare the 
x−coordinates.   During runtime, it might be likely that the player is following the ball 
closely along the vertical plane, so the first comparison will be true at least a few times 
during play, even when the ball is on the other side of the screen.  The x−coordinate 
expression, however, will be true exactly once for quite a few frames.  If the comparisons 
were flipped, the costly y−coordinate calculation can be saved to be used only exactly 
when needed, since it might happen to be true a few times when it is not needed.

Therefore, the collision detection for the paddles will look something like this:

1. Check if bx = px

2. Check if by ≤ py and by ≤ py + h, or if by + s ≤ py and by + s ≤ py + h
3. Change ball’s state

Each subsequent step must be true to continue on to the next one. The screen edge 
collisions work exactly as described, since there is only a single point to check.

At this point, the discussion of theory is complete.  I highly encourage the reader 
to try to implement this on their own before viewing the next section.  By implementing 
it yourself first, a greater understanding will be achieved while viewing someone else’s 
implementation.  Should you get stuck, feel free to glance at the relevant section for help. 
Due to the nature of the XGS PIC, the syntax is a variant of C and easily transferable to 
many other programming languages.



Implementation on the XGS PIC

A few notes before beginning.  I am currently using MPLab v. 8.15a and the v. 
1.0 (file designation V010) drivers written by Joshua Hintze.  I will be focused primarily 
on writing Pong with the NTSC drivers, but the NTSC and VGA drivers have identical 
function calls. The main differences lie in the included source files and constant names. 
Here is a quick overview of the files Pong will utilize:

1. XGS_PIC_SYSTEM_V010.h
2. XGS_PIC_SYSTEM_V010.c
3. XGS_PIC_GFX_DRV_V010.h
4. XGS_PIC_GFX_DRV_V010.h
5. XGS_PIC_NTSC_160_192_2_V010.h
6. XGS_PIC_NTSC_160_192_2_V010.s
7. XGS_PIC_GAMEPAD_DRV_V010.h
8. XGS_PIC_GAMEPAD_DRV_V010.c
9. XGS_PIC_SOUND_DRV_V010.h
10. XGS_PIC_SOUND_DRV_V010.c
11. p24HJ256GP206.gld

The first two files will configure the clock rate of the processor, allowing the PIC 
to run at an exact multiple of the NTSC frequency.  Precise timings are driven by the 
need to produce graphics on the TV screen.  If these timings are off, then the graphics 
will get distorted in some way.  Typically, these distortions manifest themselves from 
flickering to screen tearing.  If every instruction has a cycle count, then these timings will 
only help if the total sum of all instructions is less than or equal to the VSYNC time of 
the TV screen.  Otherwise, it is likely that the graphics will become garbled.  Fortunately, 
this program is simple enough to not run into this problem.

The next two files contain functions integral to the graphics engine.  These drivers 
provide functions to modify the video memory.  The two files directly after those provide 
the actual assembly language code that will draw the image onto the TV screen from the 
video memory.  These files also set the screen resolution to 160 × 192 pixels with a 2-bit 
representation for each pixel in memory. This allows up to four (22 = 4) colors to be used 
for each pixel.  Also, many constant values are provided in the header file to ease color 
generation.

The final set of files is non-graphical input and output.  Files 7 and
8 provide functions to read the button presses from the gamepad on either input port on 
the XGS PIC.  The last two files provide helper functions to output sound.

The last file is the linker script.  This file is essential to the compiler, as the linker 
script defines all of the registers and memory areas specific to the processor for the 
compiler.

Initialization

Before setting up any individual part of the game, all the drivers should be set up. 
The first thing that must be done for every program of this nature is to configure the 



clock speed of the XGS PIC. The SYSTEM files provide a handy function for doing 
exactly that: the SYS_ConfigureClock(. . .) function.  Sadly, this is the first place 
that the NTSC and VGA programs begin to diverge. The argument specifies whether to 
set the clock speed to an exact multiple of NTSC or VGA timings, with FCY_NTSC or 
FCY_VGA, respectively.  Again, this must be the first line of the main function.

Configuring the sound and gamepad drivers for use is relatively simple.  Both 
provide a single Init() function that will ensure correctness before making any of the 
other related function calls.  Calling both Gamepad_Init() and SND_Init() sets up 
the gamepad and sound drivers.  

The graphics drivers are slightly more complex to set up, requiring a few distinct 
steps.  Like many of the other drivers, the first step is to call an Init() function that 
configures the drivers to the current parameters.  The next step is to define global 
variables that will be used by the graphics drivers.  There are three variables to create and 
initialize, the foremost being the section of memory that represents the next frame to 
draw, or the video buffer.  The drivers require this to be represented as a one-dimensional 
array of unsigned char.  To make this program as modular as possible, each of the 
different screen resolutions (and screen types) files provide a constant with the same 
name that defines the size of the video buffer.  This handy constant has the name 
VRAM_BUF_SIZE.  The declaration of the video buffer will look something like this:

unsigned char g_VRAMBuffer[VRAM_BUF_SIZE] attribute((far));

The attribute function will set the array’s location into the correct place in memory.
Next, the drivers need the palette map and any palettes that will be used during 

the operation of the game.  The palettes contain colors that will be used to draw a frame 
of the screen.  Both of these are arrays with useful constants provided by the resolution 
setting file.  The constants PALETTE_MAP_SIZE and MIN_PALETTE_SIZE will provide 
a palette map and palette with the correct sizes.  The palette maps are used to provide 
indirection.  Instead of having only four colors for the entire screen, a subset of the screen 
can be assigned a different palette.  The palette that the map points to provides the actual 
color information.  The type for the arrays is again unsigned char, so the declaration will 
look something like:

unsigned short g_PaletteMap[PALETTE_MAP_SIZE];
unsigned char g_Palettes[MIN_PALETTE_SIZE];

The graphics drivers setup is almost complete.  The final step is to provide some 
initial values for the palette map and palette.  Since this program only needs two colors, 
only one color palette is needed because each palette can provide at most 4 colors. 
Keeping with the tradition of black and white pong for now, the palette and palette map 
can be initialized with the memset() function.  Every portion of the screen will only 
utilize two colors, so the first color palette is sufficient.  Setting each index in palette map 
to the first palette (index 0) will map the entire screen to this palette.

The final step is to give the palette actual colors.  The resolution file provides 
some more constants to utilize:  the codes for the colors themselves.  The NTSC_BLACK 
and NTSC_WHITE constants provide the exact colors needed. Using memset() will 



provide reasonable values for all of the colors in the palette, even if they won’t be used. 
Setting everything in the palette to NTSC_BLACK means that one of the other indices must 
be set to NTSC_WHITE manually. The initialization of the palette map and palette
will look something like:

memset(g_PaletteMap, 0, sizeof(g_PaletteMap));
memset(g_Palettes, NTSC_BLACK, sizeof(g_Palettes));
g_Palettes[1] = NTSC_WHITE;

Like the sound and gamepad drivers, the graphics drivers have an initialization 
function GFX_InitBitmap(…) that needs to be invoked before calling any of the other 
functions, as it sets up pointers and variables in the other functions.  The initialization 
function takes a few parameters: the screen height, width, the number of bits used to 
determine colors, and pointers to the video memory, the palettes, and palette map. 
Except for the three variables declared above, the resolution file provides constants for 
the screen height and width, as well as the number of bits per pixel with 
SCREEN_HEIGHT, SCREEN_WIDTH, and SCREEN_BPP. These constants have the same 
name in all of the resolution files, making the switch between modes and resolutions a 
snap.

Initialization of all the drivers is now complete. The current code should look 
something like:

#include "XGS_PIC_SYSTEM_V010.h"
#include "XGS_PIC_GAMEPAD_DRV_V010.h"
#include "XGS_PIC_GFX_DRV_V010.h"
#include "XGS_PIC_NTSC_160_192_2_V010.h"
#include "XGS_PIC_SOUND_DRV_V010.h"

// Global variables needed for the graphics drivers
unsigned char g_VRAMBuffer[VRAM_BUF_SIZE] __attribute((far));
unsigned short g_PaletteMap[PALETTE_MAP_SIZE];
unsigned char g_Palettes[MIN_PALETTE_SIZE];

int main(void) {
// INITIALIZATION
// Setting up the processor for graphics mode

SYS_ConfigureClock(FCY_NTSC);
// Setting up the graphics drivers

GFX_InitBitmap(SCREEN_WIDTH, SCREEN_HEIGHT, SCREEN_BPP, 
g_VRAMBuffer, g_Palettes, g_PaletteMap);

memset(g_PaletteMap, 0, sizeof(g_PaletteMap));
memset(g_Palettes, NTSC_BLACK, sizeof(g_Palettes));



g_Palettes[1] = NTSC_WHITE;
// Setting up the gamepad drivers
Gamepad_Init();

// Setting up the sound drivers
SND_Init();

return 0;
}

Ball Demo

This section will construct a simple demo that will move a ball around the screen. 
The motivation behind this demo is to have testable code in a few distinct phases so 
debugging will be easier.  The subsequent sections will add to the previous sections code, 
adding functionality until Pong is restored in its former glory on the XGS PIC.  The 
simplest first step is to get a ball moving around the screen without any intervention.

The first thing to consider is the definition of the ball in context.  The ball has a 
location defined by its upper-left corner.  It was also defined to be a square.  If the square 
has a side length of s, the obvious way to draw the ball is to plot pixels by row and then 
by column.  Having a nested loop structure accomplishes this quite nicely, but one thing 
remains.  What is the value of s, and how should it be represented?  The side length 
should remain constant throughout the lifetime of the program, so it is safe to say that the 
value of s should only change at compile time.  Therefore s should be a constant declared 
with the #define preprocessor directive, enabling modularity of code.  Should s be used 
in multiple places in the code, changing it once will automatically modify for any other 
place, greatly enabling the ability to tweak the code.  The constant s has a fairly 
unrecognizable name, so choosing something like BALL makes it more clear exactly what 
this constant is representing.

With a side length defined properly, the next step is to code exactly how the ball 
should be drawn.  This leads to a similar question with the storage of s,: Where should 
this code be written?  Having the game loop as uncluttered as possible is a huge perk to 
readability.  A function with a nice name will enhance the readability of the game loop, 
and, of further benefit, if the same code must be used twice (and it will be), then no 
copying and pasting is required.  Should the function have parameters?

This question is analogous to the first question:  What would make the function 
the most modular?  The ball changes location once per frame; therefore, the old 
coordinate pair representing the location may have nothing to do with the current one 
(consider when the ball is reset upon the scoring condition).  Hence, having parameters 
that accept integers representing the x and y values of the location would be of great 
benefit. There is one further thing that could be added:  a color index. Adding this has 
inherently little value at this point, as the color typically will only be the index with 
NTSC_WHITE, but tweaking the program to do “silly” things once the engine is complete 
eats up oodles of time with a friend. To draw a ball, there needs to be some notion of side 
length.  During the course of the program, the side length will never change, so defining a 
constant with name BALL to represent some integer value gives an explicit side length 



that can be used while drawing the ball and for the collision detection. The final function 
should look something like this:

void drawBall(unsigned x, unsigned y, unsigned colorIndex) {
int i, j;
for (i = x; i < x+BALL; i++)

for (j = y; j < y+BALL; j++)
GFX_Plot_2BPP(i, j, colorIndex, g_VRAMBuffer);

}

Now that there is a way to draw a ball on the screen, how should the location be 
represented?  The location can vary wildly between any two subsequent frames; hence 
the location should be stored somewhere in the main memory.  Since only two values are 
needed to represent the location (x and y in the coordinate pair), an array would be 
overkill. Two appropriately-named, unsigned integers will be easier to understand. The 
difference between using signed and unsigned integers is slight, but, as the coordinates 
are always positive in this coordinate plane, using unsigned integers ensures that positive 
integers are always being used.  The declarations should look something like this:

unsigned int ball_x;
unsigned int ball_y;

The ball needs a starting location.  When a player scores or the system is first 
turned on, the ball should start in the middle of the screen and move towards one of the 
paddles.  Thinking of the bigger picture for a moment, how many times will the ball be 
reset, or recentered, in the middle of the screen?  The obvious answer is when the 
program first starts, the scoring conditions will also reset the ball.  Using pointer 
variables, writing a function will greatly enhance the readability of the code.  To center 
the ball, it needs to be placed halfway down the screen with regards to the screen width 
and height, as well as accounting for the ball’s side length.  The resetBall(…) function 
should look something like:

void resetBall(unsigned int *ball x, unsigned int *ball y) {
(*ball x) = SCREEN_WIDTH/2-BALL/2;
(*ball y) = SCREEN_HEIGHT/2-BALL/2;

}

The penultimate piece needed for this stage is to define the ball’s various states. 
Since the vertical and horizontal states are independent, two variables are needed to 
account for all four combinations.  Rather than use arbitrary integers and attempt to 
remember what they mean, declaring some constants will smooth things along.  Four 
constants are needed to account for all of the various states.  Instead of using integers, 
utilizing unsigned short variables will save space, especially since each variable will hold 
only one of two distinct values.  Hence the constants and variable declarations should 
look similar to:



#define BALL 4
#define BALL_UP 0
#define BALL_DOWN 1
#define BALL_LEFT 0
#define BALL_RIGHT 1
...
int main() {
...
unsigned short state_x;
unsigned short state_y;
...
}

Currently, this program nearly has the ability to move a ball around the screen. 
With all the drivers set up and the variables declared, linking things together is a snap. 
The first objective is to set up the first frame before the game loop begins.  Hence, all the 
variables should have well-defined values before the screen is displayed.  The function 
resetBall(…) can be used to give the ball an initial location. Next, the ball needs to 
have an initial state.  It does not particularly matter which way the ball moves initially, as 
long as the state is well-defined before the game loop begins.

Now that the ball has a state and location, the video memory needs to be adjusted. 
The first step is to set the entire screen to black.  The graphics drivers provide the 
function GFX_FillScreen_2BPP(…) that takes a color index in the current palette and 
the pointer to the video buffer as arguments.  The 2BPP variant needs to be used because 
of the resolution file’s bits per pixel setting. “Drawing” the ball is as simple as modifying 
the video memory with drawBall(…).  After all of the variable declarations, the code 
should look akin to

...
int main() {
...
unsigned short state_x = BALL_UP;
unsigned short state_y = BALL_LEFT;

// Setting up the first frame of the game
GFX_FillScreen_2BPP(0, g_VRAMBuffer);

resetBall(&ball_x, &ball_y);
drawBall(ball_x, ball_y, 1);

GFX_StartDrawing(SCREEN_TYPE_NTSC);

}

Enter the game loop.  All of the game’s logical operations need to be done during 
the VSYNC of the display to prevent hardware contingencies and graphical anomalies. 



The graphics drivers provide two incredibly useful functions, 
WAIT_FOR_VSYNC_START() and WAIT_FOR_VSYNC_END(), that, as long as the code 
does not go over the cycle limit, can ensure the game loop is not doing anything 
productive while the screen is in the process of being displayed.  Every iteration of the 
game loop will start with WAIT_FOR_VSYNC_START() and end with 
WAIT_FOR_VSYNC_END().  Everything else is sandwiched between these two function 
calls.

As described earlier, the first step in the game loop is to move the ball.  This 
involves checking the state and then moving in the correct direction.  Simply 
incrementing and decrementing the location variables is not quite enough, as the ball 
needs to stay within the screen of play.  Hence the ball movement and collision detection 
for the upper, lower, leftmost and rightmost bounds are inextricably tied.  Comparisons 
can be saved by checking the state first, then figuring out if the ball should move or to 
change the state.  The vertical and horizontal states need to be checked separately, since 
they operate independently.  Collisions to the left and right bounds of the screen are the 
scoring conditions, but, for now, having the ball bounce around the screen is the goal of 
this demo.  The comparisons sandwiched between the VSYNC functions should look 
something like:

if (state_y == BALL_UP)
if (ball_y == 0)

state_y = BALL_DOWN;
else

ball_y--;
else

if (ball_y+BALL == SCREEN_HEIGHT)
state y = BALL_UP;

else
ball_y++;

if (state_x == BALL_LEFT)
if (ball_x == 0)

state_x = BALL_RIGHT;
else

ball_x--;
else

if (ball_x == SCREEN_WIDTH-BALL)
state_x = BALL_LEFT;

else
ball_x++;

Everything is almost in order.  The final step is to modify the video buffer.  The 
intuitive solution is to repaint the screen as completely black and then redraw the ball 
with the GFX_FillScreen_2BPP(…) and drawBall(…) functions.  Double check, 
compile, and run the code.  The ball will look like a rectangle simply because of the 
resolution.  Make sure everything is working correctly before going to the next step.



AI Paddle Demo

The next milestone is to modify the ball demo to include an AI-controlled paddle. 
The next few steps will mirror the construction of the ball demo.  Every paddle is a 
rectangle with a height and width, so setting up some constants now will set the 
dimensions for both the AI and the player. Using the #define preprocessor directive, the 
PADDLE_WIDTH and PADDLE_HEIGHT constants are integer values defining the 
dimensions of the paddle.  One final constant is needed for both a graphical concern and 
collision detection.  The distance between the paddle and the leftmost or rightmost edge 
of the screen should be the same for both the AI and the player to have the screen look 
symmetrical.  This constant, PIT, will be used to determine the axis that the paddle 
moves along, as well as providing the location of one of the paddle edges.

The program currently has no notion of how to draw a paddle.  Because there are 
two paddles on the screen at all times, having a function that takes the location and color 
of the paddle provides a great boon.  The drawPaddle(. . .) function will look 
nearly identical to the drawBall(. . .) function, except for a few name changes:

void drawPaddle(unsigned x, unsigned y, unsigned colorIndex) {
int i, j;
for (i = x; i < x+PADDLE_WIDTH; i++)

for (j = y; j < y+PADDLE_HEIGHT; j++)
GFX_Plot_2BPP(i, j, colorIndex, g_VRAMBuffer);

}

Because of the property that the paddle’s horizontal location is fixed, only one 
variable is needed to store the location.  But this requires another constant that is built on 
some of the other constants previously defined.   Since the width of the screen is 
SCREEN_WIDTH and the distance between the rightmost edge of the paddle and the width 
of the screen is PIT, SCREEN_WIDTH-PIT yields the location of the right side of the 
paddle.  This is close to what is needed but not sufficient.  All of the locations of game 
objects are top-left corners, so using SCREEN_WIDTH-PIT-PADDLE_WIDTH provides the 
correct left edge of the paddle.  The constant P2_X must be defined after PIT and 
PADDLE_WIDTH are declared.

Now for the interesting part: the AI algorithm.  The obvious approach to have the 
midpoint of the paddle always follow the ball provides an extremely brutal opponent and 
little chance for the player to score.  A more forgiving algorithm follows the ball if it’s in 
the correct state and past a certain section of the screen.  Since the AI-controlled paddle is 
on the right side of the screen, the ball must be in a right-moving state for a collision to 
occur.  When choosing an x−location to start the AI control, the closer the choice is to
0, the more difficult the AI, as the AI will have more time to catch up to the ball’s current 
y−coordinate. Using a third of the screen as a dead zone provides a challenging opponent.

So, if the ball is in a right-moving state and past the midpoint of the screen, the AI 
should attempt to match the midpoint of the paddle with the midpoint of the ball to 
maximize the possibility of a collision. Hence, if the ball is currently above the midpoint 
of the paddle, the paddle should move upward, or decrement the y−coordinate of the 



location. Likewise, if the ball is currently below the midpoint of the paddle, the paddle 
should move downward, or increment the y−coordinate of the location.

One last consideration:  The AI paddle should not roll off the screen.  This can 
happen if the paddle is tangent to the top bound of the screen and the ball is still moving 
upward.  Another case exists symmetrically if the ball is moving downward.  The easiest 
solution is to check the location of the paddle before moving the paddle in the respective 
direction.  A similar concern arises for player input in the next phase.  The complete AI 
algorithm will look something like:

if (state_x == BALL_RIGHT && ball_x >= SCREEN_WIDTH/3)
if (ball_y+BALL/2 > p2_y+PADDLE_HEIGHT/2) {

if (p2_y < SCREEN_HEIGHT-PADDLE_HEIGHT)
p2_y++;

}
else

if (p2_y > 0)
p2_y--;

Since the screen is being reset to black for every iteration of the game loop, the 
paddle needs to be drawn for both the very first frame (before the graphics engine is 
started with the function GFX_StartDrawing(…)) as well as right before waiting for the 
end of the VSYNC.

The final part to this demo is to modify and add to the current collision detection 
code.  The modification needed is fairly trivial.  Now that there is a paddle on the right 
side of the screen, one of the two possible scoring conditions can be applied.  Therefore, 
the subcase in the ball movement code when the ball is moving right and tangent to the 
right side of the screen needs to change.  Instead of bouncing, the ball needs to be reset 
and a function already exists for doing that!  Simply call resetBall(…) instead of 
changing the state.

The addition to the collision detection code is fairly simple.  The first bit to check 
is the state of the ball.  If the ball is moving right, then the possibility of a collision exists. 
If the ball is possibly tangent to the paddle, simply compare the locations of both the 
upper and lower right corner of the ball with the left side of the paddle.  If either corner is 
tangent to the paddle, then a collision occurs.  Hence the only thing to do is to change the 
state.  The collision detection algorithm should look something like:

if (state_x == BALL_RIGHT)
if (ball_x+BALL == P2_X)

if ((ball_y >= p2_y && ball_y <= p2_y+PADDLE_HEIGHT) ||
    (ball_y+BALL >= p2_y && 
     ball_y+BALL <= p2_y+PADDLE_HEIGHT))

state x = BALL LEFT;

That completes this phase. Compile and run the code and ensure everything is 
working before transitioning from graphics demo to full-fledged game.



Input and Output

The main goal is to add interactivity in this phase.  All of the core game logic is 
already written but needs to be reapplied symmetrically to handle the left paddle.  But 
first, a second paddle must exist for the player to move.

Creating another paddle is a simple rehash of the steps to create the computer 
paddle.  The location of the paddle needs a constant for the fixed horizontal location and 
one variable to store the changing vertical location.  Since the left side of the screen is 0 
for the x−coordinate, the constant P1_X is a rename of the PIT constant declared earlier. 
The unsigned int p1_y likewise serves a similar function to the AI paddle. Another 
call to drawPaddle(…) needs to be made for the left paddle as well for both the first 
frame and at the end of every iteration of the game loop.

Staying on the vein of similar modifications for a moment, the collision detection 
needs to be adjusted as well.  Both scoring conditions logically work in this iteration, so 
instead of adjusting the state when the ball reaches the left side of the screen, call 
resetBall(…).  The next modification is at the end of the right paddle collision code. 
Appending an “else” onto that structure implies that the ball must be moving left.  The 
next step is to compare the rightmost edge of the left paddle and the x−coordinate of the 
ball.   The final step is to again compare the upper and lower corners, but this time the 
left side of the ball.  The entire paddle-collision structure should be akin to:

if (state_x == BALL_RIGHT) {
if (ball_x+BALL == P2_X) 

if ((ball_y >= p2_y && ball_y <= p2_y+PADDLE_HEIGHT) ||
    (ball y+BALL >= p2_y && 
     ball_y+BALL <= p2_y+PADDLE_HEIGHT))

state_x = BALL_LEFT;
}
else

if (ball_x == P1_X+PADDLE_WIDTH)
if ((ball_y >= p1_y && ball_y <= p1_y+PADDLE_HEIGHT) ||
(ball_y+BALL >= p1_y && ball_y+BALL <= p1_y+PADDLE_HEIGHT))

state_x = BALL_RIGHT;

Now, for some fresher content. The game input must be sandwiched between ball 
movement and the collision detection code, but there is no relationship between the AI 
code and the game input code.  The drivers, again, provide a nice function for handling 
gamepad input on the XGS PIC.  The Gamepad Read(…) takes a constant as an 
argument that determines which gamepad to read (either GAMEPAD_0 or GAMEPAD_1) 
and returns a number representing what button is being pressed.  The only buttons 
necessary for this game are the up and down buttons on the D-pad, represented by 
GAMEPAD_UP and GAMEPAD_DOWN, respectively.

Using a switch statement to read the input, for each case, the only thing to do is to 
adjust p1_y in the correct fashion, with one hitch. Like the AI paddle, the paddle should 
not roll off of the screen. The solution is the exact same, simply check to make sure there 
is still room to move the paddle before adjusting p1_y. The game input code should look 
like:



switch (Gamepad_Read(GAMEPAD_0)) {
case GAMEPAD_UP:

if (p1_y != 0)
p1_y--;

break;
case GAMEPAD_DOWN:

if (p1_y != SCREEN_HEIGHT-PADDLE_HEIGHT)
p1_y++;

break;
}

The game is nearly a good representation of the original Atari game, the only 
thing missing are the bleeps and bloops. The sound drivers have been initialized; it’s time 
to use them.

The sound drivers provide a function SND_PlayTone(…) that accepts a 
frequency in Hertz and plays the given note.  For reference, American tuning is typically 
A=440 Hz.  This function will continually play a tone until another call is given with an 
argument of 0.  The tricky part is to get the sound to play for a decent length of time 
without halting the game loop.  A working solution is to stop any sound right after the 
VSYNC period begins.  Then when a sound starts in any of the collision detections, the 
sound will automatically start.  This ensures that a sound is playing at maximum for 1/30 
of a second, and is long enough on average to generate a recognizable tone.

Optimizations

As promised, a major inefficiency in the current implementation will be brought 
to light.  For every frame generated by the game loop, a call to 
GFX_FillScreen_2BPP(…) is made.  This function will reset every pixel in the video 
memory to NTSC_BLACK even though most of the pixels are already in such a state!

The solution involves a few modifications to how the objects are drawn on the 
screen.  Both of the respective functions will need to know the current state of the game 
object, as well as all of the current parameters.  The function then needs to plot a few 
white pixels in the correct direction(s) and a few black pixels are painted in the opposite 
direction(s).

Consider the paddle for a moment.  If the paddle is moving upward, then a single 
white row needs to be painted on top of the current paddle and a single black row needs 
to be painted at the bottom of the paddle.  Simply reverse the colors when moving 
downward.  The ball follows a similar paradigm, except 2 rows and 2 columns will have 
to be painted every time the ball moves.

With this implementation, the nested loop structure to draw the entire object can 
be moved to initialization.  Also, care must be taken to ensure that pixels are not being 
plotted beyond the edges of the screen.  These modifications greatly improve the 
efficiency of the program.


